Managing Warranty Inventory for Multi-Generational High-Tech Devices

Erik Bertelli Candi Yano (also Haas School of Bus.) POMS 2019 May 6, 2019

Motivation

Motivation

When Should We Stop Production?

Time

The Big Questions

Timing

When should we stop production?

The Big Questions

Outline

- Commonly known as:
 - Last Time Buy (LTB)

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy
 - End of Life Buy

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy
 - End of Life Buy
 - Final Order

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy
 - End of Life Buy
 - Final Order
- Motivated by spare parts setting
 - Supplier has discontinued an essential component and manufacturer must make LTB

Table 1: Supply Options Considered in Addition to the Last Time Buy				
		Harvest Parts	Additional	Product
Paper	Repair	from Returns	Production	Trade-Ins
Moore (1971)				
Ritchie and Wilcox (1977)				
Fortuin (1980)				
Fortuin (1981)				
Teunter and Haneveld (1998)				
Teunter and Fortuin (1999)		\checkmark		
Teunter and Haneveld (2002)			\checkmark	
Cattani and Souza (2003)				
Kleber and Inderfurth (2007)		\checkmark		
Inderfurth and Mukherjee (2008)		\checkmark	\checkmark	
Bradley et al. (2009)				
van Kooten and Tan (2009)	\checkmark			
Leifker et al. (2012)			\checkmark	
Pourakbar and Dekker (2012)				
Pourakbar et al. (2012)	\checkmark			
Inderfurth et al. (2013)		\checkmark	\checkmark	
van der Heijden and Iskandar (2013)	\checkmark			
Pourakbar et al. (2014)		\checkmark		\checkmark
Behfard et al. (2015)	\checkmark			
Cole et al. (2015)				\checkmark
Cole et al. (2016)				\checkmark

Assumptions

- We consider only devices that are too costly to repair
- Zero lead time
- Until the final period, warranty claims are satisfied as they arrive
- Leftover units have no salvage value

Notation

Parameters

- T number of periods
- c_p production cost per unit
- c_s shortage cost per unit
- c_f fixed operational production cost per period
- c_h holding cost per unit per period

Decision Variables

- t time of final order or final period of production
- q final order quantity

Notation

Demand Distributions

- D_i random variable representing demand in period *i* where i = 1...T
- f_i^j pdf of cumulative demand from period *i* to period *j*
- F_i^j cdf of cumulative demand from period *i* to period *j*

$$\min_{t,q} \quad c_f t + c_p \sum_{i=1}^t \mathbb{E}[D_i] + c_p q$$

Operational Costs Production Costs

$$\min_{t,q} \quad c_f t + c_p \sum_{i=1}^t \mathbb{E}[D_i] + c_p q + c_h \sum_{i=t+1}^T \mathbb{E}\left[\left(q - \sum_{j=t+1}^i D_j\right)^+\right] + c_s \mathbb{E}\left[\left(\sum_{i=t+1}^T D_i - q\right)^+\right]$$

$$\text{Operational Costs Production Costs} \qquad \text{Holding Costs} \qquad \text{Shortage Costs}$$

Solution Properties

When the warranty demand is:

- 1. Independent period to period
- 2. From a family of infinitely-divisible distributions (e.g. Normal)
- 3. Non-negative in each period

Solution Properties

When the warranty demand is:

- 1. Independent period to period
- 2. From a family of infinitely-divisible distributions (e.g. Normal)
- 3. Non-negative in each period

The Expected Cost is convex in q for a given t

Solution Properties

When the warranty demand is:

- 1. Independent period to period
- 2. From a family of infinitely-divisible distributions (e.g. Normal)
- 3. Non-negative in each period

The Expected Cost is convex in q for a given t

 $q^*(t)$ is non-increasing in t

Simulation Results

Simulation Results

Simulation Results

We assumed the warranty demand is:

- 1. Independent period to period
- 2. From a family of infinitely-divisible distributions (e.g. Normal)
- 3. Non-negative in each period

We assumed the warranty demand is:

- 1. Independent period to period
- 2. From a family of infinitely-divisible distributions (e.g. Normal)
- 3. Non-negative in each period

We assumed the warranty demand is:

- 1. Independent period to period
- 2. From a family of infinitely-divisible distributions (e.g. Normal)
- 3. Non-negative in each period

Why would we delay our Last Time Buy?

We assumed the warranty demand is:

- 1. Independent period to period
- 2. From a family of infinitely-divisible distributions (e.g. Normal)
- 3. Non-negative in each period

Why would we delay our Last Time Buy?

To learn about the true device failure rate

We assumed the warranty demand is:

- 1. Independent period to period
- 2. From a family of infinitely-divisible distributions (e.g. Normal)
- 3. Non-negative in each period

Why would we delay our Last Time Buy?

To learn about the true device failure rate

- Given a population of devices of varying ages
- Failures occur according to an increasing failure rate model

- Given a population of devices of varying ages
- Failures occur according to an increasing failure rate model

Let $n_t(j)$ be the number of devices in period t that are j periods old

- Given a population of devices of varying ages
- Failures occur according to an increasing failure rate model

Let $n_t(j)$ be the number of devices in period t that are j periods old Let $\hat{h}_t(j)$ be the hazard rate for devices that are j periods old estimated in period t

- Given a population of devices of varying ages
- Failures occur according to an increasing failure rate model

Let $n_t(j)$ be the number of devices in period t that are j periods old Let $\hat{h}_t(j)$ be the hazard rate for devices that are j periods old estimated in period t

Then the demand in any given period t can be expressed as:

$$D_t = \sum_{j=1}^T \operatorname{Bin}(n_t(j), \hat{h}_t(j))$$

In each period,

- 1) Update failure rate estimates by age
- 2) Calculate expected cost of:
 - a) Making the Last Time Buy now
 - b) Best option involving producing now and making the LTB later

If the DP value function were convex, we might be able to solve the problem, but we already showed that convexity is not guaranteed

Decision Variables

- y_t is set to 1 if we produce in period t, 0 otherwise
- q_t is the amount we produce in period t

State Variables

- I_t is the inventory at the end of period t
- $\hat{h}_t(j)$ is the estimate of the hazard rate updated in period t for devices that are j periods old
- $n_t(j)$ is the number of devices in period t that are j periods old

$$G_t(y_t, q_t; I_{t-1}, y_{t-1}, \vec{\hat{h}}_{t-1}, \vec{n}_{t-1})$$

$$G_{t}(y_{t}, q_{t}; I_{t-1}, y_{t-1}, \hat{h}_{t-1}, \vec{n}_{t-1}) = \min_{\substack{y_{t}: y_{t} \leq y_{t-1} \\ q_{t}: q_{t} \leq My_{t}}} c_{f}y_{t} + c_{p}q_{t} + \mathbb{E}\left[c_{h}(I_{t-1} + q_{t} - D_{t})^{+} + c_{s}(D_{t} - I_{t-1} - q_{t})^{+}\right]$$

$$G_{t}(y_{t}, q_{t}; I_{t-1}, y_{t-1}, \hat{h}_{t-1}, n_{t-1}) = \min_{\substack{y_{t}: y_{t} \leq y_{t-1} \\ q_{t}: q_{t} \leq My_{t}}} c_{f}y_{t} + c_{p}q_{t} + \mathbb{E}\left[c_{h}(I_{t-1} + q_{t} - D_{t})^{+} + c_{s}(D_{t} - I_{t-1} - q_{t})^{+}\right]$$
Current Period: Operational and Production Costs Holding Costs Shortage Costs

$$G_{t}(y_{t}, q_{t}; I_{t-1}, y_{t-1}, \vec{\hat{h}}_{t-1}, \vec{n}_{t-1}) = \min_{\substack{y_{t}: y_{t} \leq y_{t-1} \\ q_{t}: q_{t} \leq My_{t}}} c_{f}y_{t} + c_{p}q_{t} + \mathbb{E}\left[c_{h}(I_{t-1} + q_{t} - D_{t})^{+} + c_{s}(D_{t} - I_{t-1} - q_{t})^{+}\right] \\ + \mathbb{E}\left[G_{t+1}^{*}((I_{t-1} + q_{t} - D_{t})^{+}, y_{t}, \vec{\hat{h}}_{t}, \vec{N}_{t})\right]$$

Expected Cost to Go

Two possible hazard rates, but incomplete information due to an immature population of devices

Assumptions

- No learning in these examples
- The warranty period is 12 months
- Replaced devices are no longer eligible for warranty claims
- In each period, demand is observed before being satisfied

Purpose: To show the value of delaying the Last Time Buy

Potential Warranty Claims

Resulting Demand and Cost

Resulting Demand and Cost

Cost of two period delay: 2.8%

UC Berkeley IEOR

UC Berkeley IEOR

Forecasting Warranty Claims

Short Product Life Cycles

Forecasting Warranty Claims

Short Product Life Cycles

Warranty Expiration

Forecasting Warranty Claims

Short Product Life Cycles

Warranty Expiration

Internet of Things

Thank you

