Managing Warranty Inventory for Multi-Generational High-Tech Devices

Erik Bertelli Candi Yano (also Haas School of Bus.) POMS 2018 May 5, 2018

Motivation

Motivation

When Should We Stop Production?

The Big Questions

Timing

When should we stop production?

The Big Questions

Outline

- Commonly known as:
 - Last Time Buy (LTB)

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy
 - End of Life Buy

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy
 - End of Life Buy
 - Final Order

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy
 - End of Life Buy
 - Final Order
- Motivated by spare parts setting
 - Supplier has discontinued an essential component and manufacturer must make LTB

Table 1: Supply Options Considered in Addition to the Last Time Buy				
		Harvest Parts	Additional	Product
Paper	Repair	from Returns	Production	Trade-Ins
Moore (1971)				
Ritchie and Wilcox (1977)				
Fortuin (1980)				
Fortuin (1981)				
Teunter and Haneveld (1998)				
Teunter and Fortuin (1999)		\checkmark		
Teunter and Haneveld (2002)			\checkmark	
Cattani and Souza (2003)				
Kleber and Inderfurth (2007)		\checkmark		
Inderfurth and Mukherjee (2008)		\checkmark	\checkmark	
Bradley et al. (2009)				
van Kooten and Tan (2009)	\checkmark			
Leifker et al. (2012)			\checkmark	
Pourakbar and Dekker (2012)				
Pourakbar et al. (2012)	\checkmark			
Inderfurth et al. (2013)		\checkmark	\checkmark	
van der Heijden and Iskandar (2013)	\checkmark			
Pourakbar et al. (2014)		\checkmark		\checkmark
Behfard et al. (2015)	\checkmark			
Cole et al. (2015)				\checkmark
Cole et al. (2016)				\checkmark

Assumptions

- We consider only devices that are too costly to repair
- Zero lead time
- Until the final period, warranty claims are satisfied as they arrive
- Warranty claims are
 - Independent period to period
 - From a family of infinitely-divisible distributions (e.g. Normal)
 - Non-negative in each period
- Leftover units have no salvage value

Notation

Parameters

- T number of periods
- c_p production cost per unit
- c_s shortage cost per unit
- c_f fixed operational production cost per period
- c_h holding cost per unit per period

Decision Variables

- t time of final order or final period of production
- q final order quantity

Notation

Demand Distributions

- D_i random variable representing demand in period *i* where i = 1...T
- f_i^j pdf of cumulative demand from period *i* to period *j*
- F_i^j cdf of cumulative demand from period *i* to period *j*

$$\min_{t,q} \quad c_f t + c_p \sum_{i=1}^t \mathbb{E}[D_i] + c_p q$$

Operational Costs Production Costs

$$\min_{t,q} \quad c_f t + c_p \sum_{i=1}^t \mathbb{E}[D_i] + c_p q + c_h \sum_{i=t+1}^T \mathbb{E}\left[\left(q - \sum_{j=t+1}^i D_j\right)^+\right] + c_s \mathbb{E}\left[\left(\sum_{i=t+1}^T D_i - q\right)^+\right]$$

$$\text{Operational Costs Production Costs} \qquad \text{Holding Costs} \qquad \text{Shortage Costs}$$

Consider finding the optimal q associated with a fixed t

$$c_p + c_h \sum_{i=t+1}^T F_{t+1}^i(q) + c_s(F_{t+1}^T(q) - 1) = 0$$

Consider finding the optimal q associated with a fixed t

$$c_p + c_h \sum_{i=t+1}^T F_{t+1}^i(q) + c_s(F_{t+1}^T(q) - 1) = 0$$
$$c_h \sum_{i=t+1}^T f_{t+1}^i(q) + c_s f_{t+1}^T(q)$$

Consider finding the optimal q associated with a fixed t

$$c_p + c_h \sum_{i=t+1}^T F_{t+1}^i(q) + c_s(F_{t+1}^T(q) - 1) = 0$$
$$c_h \sum_{i=t+1}^T f_{t+1}^i(q) + c_s f_{t+1}^T(q) \ge 0$$

Consider finding the optimal q associated with a fixed t

$$c_p + c_h \sum_{i=t+1}^T F_{t+1}^i(q) + c_s(F_{t+1}^T(q) - 1) = 0$$
$$c_h \sum_{i=t+1}^T f_{t+1}^i(q) + c_s f_{t+1}^T(q) \ge 0$$

Let $q^*(t)$ represent the implicit solution to the FONC

Modified Objective

$$\min_{t} \quad c_{f}t + c_{p} \sum_{i=1}^{t} \mathbb{E}[D_{i}] - c_{h} \sum_{i=t+1}^{T} \int_{0}^{q^{*}(t)} x f_{t+1}^{i}(x) dx + c_{s} \int_{q^{*}(t)}^{\infty} x f_{t+1}^{T}(x) dx$$

Solution Properties

The Expected Cost is convex in q for a given t

The Expected Cost is convex in q for a given t

 $q^*(t)$ is non-increasing in t

Average Cost for a Variety of Stopping Periods and Order Quantities

Average Cost for a Variety of Stopping Periods and Order Quantities

The Expected Cost is convex in q for a given t

UC Berkeley IEOR

Average Cost for a Variety of Stopping Periods and Order Quantities

UC Berkeley IEOR

I just sent in my broken golf watch for repair, and the company sent me a brand new golf watch 2.0 instead!

I just sent in my broken golf watch for repair, and the company sent me a brand new golf watch 2.0 instead!

How big of a danger is this moral hazard? It depends on:

I just sent in my broken golf watch for repair, and the company sent me a brand new golf watch 2.0 instead!

How big of a danger is this moral hazard? It depends on:

- 1. The number of new devices given out
- 2. The time relative to the new product introduction

Quadratic Shortages

$$\min_{t,q} \quad c_f t + c_p \sum_{i=1}^t \mathbb{E}[D_i] + c_p q + c_h \sum_{i=t+1}^T \mathbb{E}\left[\left(q - \sum_{j=t+1}^i D_j\right)^+\right] + c_s \mathbb{E}\left[\left(\left(\sum_{i=t+1}^T D_i - q\right)^+\right)^2\right]$$

Quadratic Shortages

Average Cost for a Variety of Stopping Periods and Order Quantities

Quadratic Shortages

Log of Average Cost for a Variety of Stopping Periods and Order Quantities

Short Product Life Cycles

Short Product Life Cycles

Warranty Expiration

Short Product Life Cycles

Warranty Expiration

Internet of Things

Thank you

